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The orientation dependence of T;’ and r;i for single crystals is discussed in terms of 
the second moment tensor formalism applied to dipolar solids. It is shown that for long 
correlation times, T;’ is a linear function of the maximum possible second moment 
reduction that may be caused by the motion responsible for the relaxation. Similarly, 
r;d in the vicinity of the Y&’ maximum is proportional to the same second moment 
reduction. For short correlation times the symmetry restrictions on the orientation de- 
pendence of T;’ are discussed and are found to differ from the restrictions on the second 
moment tensor for some crystal symmetries. The nonexponentiality of the relaxation for 
polycrystalline samples, resulting from anisotropy of the relaxation rates for single crystals 
is discussed. 

Nuclear magnetic relaxation caused by the modulation of magnetic dipole-dipole 
interactions by motions in solids has been discussed by numerous authors, and a 
recent monograph by Wolf (1) covers much of the theory developed so far. In an 
earlier paper (2) one of us introduced a convenient procedure for the calculation of 
relaxation rates for such processes. In that paper expressions were given for relaxation 
rates in terms of second moment tensors. These expressions reduce considerably the 
computational effort otherwise required in a calculation of relaxation rates for single 
crystals as a function of their orientation relative to the external magnetic field. In 
the present paper this procedure is investigated further; in particular we discuss the 
restrictions imposed by crystal symmetry on the orientational dependence of the 
spin-lattice relaxation rate, T; ’ , and find that these restrictions are sometimes different 
from those imposed on second moment tensors (3). 

MATHEMATICS 

For the convenience of the reader some of the mathematics of Ref. (2) is repeated 
here. The high field, laboratory frame, spin-lattice relaxation rate may be written 

T;’ = 2/&(I) -I- 
1 + C&2 + %K”) 1 + iuzT2 . 

0 

Similarly, the rotating frame Zeeman relaxation rate may be written 

T;; = K(O) 1 + ;u272 + 5/3K’1’ ’ + 2/3K(2’ ’ 
I 1 + CO;72 1 + 4w&2 PI 

* Now at Studsvik Energiteknik AB, S-61 1 82 Nykiiping, Sweden. 
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The orientational dependence of the relaxation constants A!‘), K(l), and fi2’ can be 
expressed in terms of tensor quantities S@) by the relation 

K’“’ = @‘“‘q* 131 

The five components of the vector q are given in Table 1 in terms of the unit vector 
h = (h, , h2, h3) along the static magnetic field vector Bo. The simple vectors q carry 
all the orientation dependence of the relaxation constants; this is the essence of the 
procedure of Ref. (2)-tedious calculation of lattice sums do not have to be carried 
out for each crystal orientation. It is sufficient to calculate such sums for each of the 
(orientation independent) components of the tensors S’“‘. For the subsequent dis- 
cussion of symmetry properties the components of h, and hence also q and SC”), are 
defined in an orthonormal coordinate system i, j, and k with i parallel to the crys- 
tallographic axis a, k parallel to the reciprocal axis c*, and j = k X i. 

The tensors SC”’ are related to the second moment tensor S defined by 

M2=4sQ 

where M2 is the second moment. In fact it was shown in (2) that 

[41 

$0’ = s,.., - s m&on [51 

where Srigid is the second moment tensor in the absence of nuclear motions and 
Smotion the same quantity averaged over the motions responsible for the spin-lattice 
relaxation. Thus 

K(O) = AM2 = M2 rigid - M2 motion WI 

where M2 rigid and M2 m,,tion are the second moments without or with motional averaging, 
respectively. 

The tensors S(l) and SC2) appearing in the expression for the spin-lattice relaxation 
rates T ;j and T ;’ can be calculated from S(O) as demonstrated in Ref. (2). Unfor- 
tunately, a number of sign errors appear in the relations between S(O), S(i) and St2) 

TABLE 1 

COMPONENTS OF THE VECTOR q IN TERMS OF 

THE COMWNENTS hi OF A UNIT VECTOR ALONG 
THE STATIC MAGNETIC FIELD 

2 

$(I - 3h:) 

$ (h: - h:) 

3 dl5h,hz 

4 fih,hg 

5 fih*h, 
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TABLE 2 

THE RELAXATION TENSORS S(I) AND SC*) EXPRE.%GED IN TERMS OF THE TENSOR S(O) 

Sl:’ = g3sg + 3Sg) 
Sl:! = &(2dSfj - 2dS’O’ 55) 
Sj:! = !&(2dS:> 
S\y = %(-3Sz - dS:“a - d.Sg)) 
St’) = k(-3.$; + dS: - dS;)) 
sg = %(4&y + SE + s$) 
siy = %(-4&y) 
S$!j = &(-dSl”a - Sg + 3S;9 
S# = i(dSg - S: - 3Sz) 
s# = k(4sg + s2 + s$, 
$2 = k(-dSg - 3Sg - Sz) 
Sf,? = x(-dSl”a + 3s: - S:) 
Sa = k(3S19’ + dSg + Sg + SE + S$) 
S$‘) = 16 (2dSz - $3 
S$y = !&(3S;4’ - dS$ + S:“: + S:“: + S$ 

s\:’ = yk,(3SZ + 3sg9 
S\? = k(-3Sf - 2dSg + 2dS;?) 
St’) = %(-3Sy - 2dS;)) 
$3 = k(dS:“a + dSg> 
S’&? = g(-dSg + dS;b 
$2 = %(3S:q’ - sg + 2s: + 2s:) 
Sl? = !&b 
S$j = &(dS: - 2S$ - 3s:) 
Sly = k(-dSl”l - 2Sg + 3Sg) 
sly = &(3S:o) - sg) + 2s; + 2S:o1) 
S$f = k(dSg + 3Sz - 2s;)) 
9’) = !&(dS:? - 3S:o,’ - 2S9 
S6fl = k(-dS:o: + 2Sz + 2Sg t 2Sg) 
s!$y = u-2$?? - $3 

(0) (0) S# = ‘h(dS,, + 2~752 + 2S1, + 25144) 

Note. d = 31J2 

in Ref. (3). Therefore a corrected version of the relevant relations, expressing S(I) 
and S(*) in terms of S(O) are given here in Table 2. The corrected relations imply 
that 

‘/zs(‘J) + S(I) + $2) = l/21 Tr ~(0) 171 
where I is a 5 X 5 identity matrix. As shown in (2), the trace Tr S(O) is equal to the 
reduction of the second moment for a powder by motional averaging. 

T;’ FOR LONG CORRELATION TIMES 

At low temperatures for which wo7 $ 1, [l] reduces to 

T;’ = & (K”’ + zo2’). 

Combining [8] with [3] and [7] then gives 
l-7’ = & (5 Tr S(O) - qS(“q). 

PI 

The orientation dependence of T;' is contained in the second term in the bracket, 
qS”‘q, which is simply the difference between the second moments of rigid lattice 
and motionally averaged spectra, whereas the trace in the orientation independent 
term is the corresponding difference for a powder. Thus, apart from a constant offset, 
the spin-lattice relaxation rate T 7’ at low temperatures, varies essentially in the same 
way with crystal orientation as the orientation dependence of the second moment 
reduction produced by the molecular motion responsible for the relaxation. 

T;’ FOR SHORT CORRELATION TIMES 

At high temperatures where 0~7 4 1 [l] reduces to 

T;' = $ (~(1) + 4p)) = $ ~~~ 1101 
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where 
R = $1) + 4p) [Ill 

Clearly, also in this case T7’ may be expressed in terms of the second moment 
reduction tensor components, S$. However, the relation is not as simple as in the 
long correlation time limit. 

In Ref. (3) the restrictions on the second moment tensor imposed by crystal symmetry 
were tabulated. Combining these restrictions with the definition of the tensor R, the 
symmetry restrictions on R can easily be derived. The result is reported in Table 3 
along with the symmetry restrictions on the second moment tensor. For orthorombic, 
trigonal, cubic, and some tetragonal crystals the symmetry restrictions are different 
for the R and the S tensors. As an example, it is clear from Table 2 that the spin- 
lattice relaxation rate T ;’ is independent of crystal orientation for cubic crystals 
when wo7 < 1, whereas the second moment for spectra of such crystals is anisotropic, 
characterized by two independent tensor components. 

ROTATING FRAME 7-T; 

For the common case o1 < wo, the second and third term in [2] may be neglected 
in the vicinity of the T;j maximum and [2] reduces to 

or, using [3] 

Tlb’ = K(o) ’ 
1 + 4W2T2 [I21 

1 

T;; zz @‘o’,-, 7 
. 1 + 4W2T2 iI31 

I 

Thus the rate T;j is proportional to the second moment reduction Mz rigid - M2 motion 
caused by the motion responsible for the relaxation. It is also clear from a comparison 
of [9] and [ 131 that T;j in general will show a larger relative variation with crystal 
orientation than the laboratory frame T;’ (at least for long correlation times, the 

TABLE 3 

SYMMETRY RESTRICTIONS ON THE TENSORS S(‘) AND R(S:;’ = St! AND R,,, = RkJ 

Crystal class 
Laue 

symmetry 

Nonzero, unique elements 

S R 

Triclinic i All 15 All 15 
Monoclinic” 2/m ~,,~,*s,s~*~~s,,~,,s,~ RIIR,~R,~II~~R=~R~~R,~~~, 
Orthorhombic mmm s, ,s,2s2,s3,s455, RIIRI& = RwWk 
Tetragonal 4/m s, &%3s33s44 = & 

4Jmmm s,,s,,s,,s, = s,, R,&&& = R,, 

Trigonal b 3 S,Jm = s&4 = &,S,, = -s,,s, - s,, 
3m S,& = s&4 = S5& = s*, R,& = R&L = R,, 

Hexagonal 6/mmm s,,s,, = s,,su = s,, &Jb~ = &RM = R,, 
Cubic m3m s,, = s,,s,, = s, = s,, R,, = RZ2 = R1, = L = R,, 

’ The symmetry axis is b. 
b The symmetry axis is c in the corresponding hexagonal cell. 
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regime of validity of Eq. [9]); the laboratory frame relaxation rate T;’ is dominated 
by the orientation independent part proportional to Tr S. Very large orientation 
dependencies have in fact been observed for T;b in some crystals. One example is 
provided by pyromellitic acid dihydrate for which the proton T;: varies by more 
than one order of magnitude (4). 

RELAXATION IN POLYCRYSTALLINE SAMPLES 

For polycrystalline samples, spin diffusion between crystallites is generally very 
slow compared to spin diffusion inside the crystallites and therefore the spin-lattice 
relaxation inside a crystallite proceeds essentially independently of the relaxation in 
neighboring crystallites. If the relaxation time is dependent on orientation, this then 
leads to a nonexponential magnetization recovery in a spin-lattice relaxation time 
measurement for a polycrystalline sample even if the magnetization recovery for each 
crystallite is exponential. As has been pointed out by Wolf (.5), the proper way of 
calculating the spin-lattice relaxation behavior for a polycrystalline sample is to average 
the magnetization recovery rather than the spin-lattice relaxation rate over the ori- 
entations of the crystals. Barton and Sholl (6) have discussed the magnetization 
recovery for powders of some cubic crystals and have examined the deviation of the 
recovery from exponentiality. For most of the cases discussed by these authors the 

1.0 
I  I  I  I  

0 2 4 6 6 10 

t<T,d’> 

FIG. 1. Calculated decay of the normalized spin-locked magnetization, M(t)/M(O), in polycrystalline 
pyromellitic acid dihydrate. The solid curve has been obtained by a proper averaging of exponential decay 
curves for pseudorandomly oriented crystallites. The dashed line represents a hypothetic exponential decay 
with an average relaxation rate, (r;j). 
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deviation is relatively small. For crystals of lower symmetry, and in particular for 
Tip, the anisotropy of the relaxation rate may be considerably larger than for the 
cases treated by Barton and Sholl. 

A proper averaging of the magnetization recovery curves over random orientations 
of the crystallites in a powder is easily carried out using the second moment tensor 
formalism. As an example we have performed such calculations for the decay of the 
spin-locked magnetization in the rotating frame for pyromellitic acid dihydrate which, 
as stated above, has a very large anisotropy in T;, : the ratio between the highest and 
lowest relaxation rate at a given temperature is about 35. The calculation of the 
average decay curve was carried out in two steps. First S(O) was calculated using the 
relaxation model of Ref. (4). Then, using this tensor, relaxation curves were generated 
and averaged for about 1600 evenly distributed directions of the static magnetic field. 
The resulting average decay curve is shown in Fig. 1. For comparison we also show 
the exponential decay corresponding to (T;;), the average of the relaxation rate over 
the same distribution of magnetic field directions. As can be seen, the two graphs 
diverge quite rapidly from each other; already after 2( T;j)-' the properly calculated 
magnetization is twice the magnetization calculated from (T;;). It is clear that the 
exponential decay curve is a very poor representation of the actual magnetization 
decay in this case. 

REFERENCES 

1. D. WOLF, “Spin Temperature and Nuclear-Spin Relaxation in Matter,” Oxford Univ. Press, London, 
1979. 

2. R. SJBBLOM, J. Magn. Reson. 22, 425 (1975). 
3. R. SJ~BLOM, J. Magn. Reson. 22, 41 I (1975). 
4. W.SCHAJOR,U.HAEBERLEN, ANDJ.TEGENFELDT, J Mugn.Reson.49,233(1982). 
5. D. WOLF,J. Magn. Reson. 17, l(1975). 
6. W. A. BARTON AND C. A. SHOLL, J. Phys. C9,4315 (1976). 


