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In molecular solids, the rigid-body vibrational motions usually affect the quadrupole, 
the chemical shift, and the dipole-dipole interactions as well as the second moment much 
more strongly than other vibrations. It is shown here that the changes in these couplings 
and second moments due to librational motions are given by simple expressions linear in 
the elements of the librational tensor. 

In a previous paper (1) a general procedure was described for the evaluation of NMR 
second moments in dipolar solids. This procedure included the effects of librational and 
reorientational motion and is applicable to single crystals and powders. The purpose of 
the present paper is to provide more convenient formulas for the librational averaging of 
the second moments, and also to demonstrate the application of this formalism to 
quadrupole, chemical shift, and dipoledipole interactions. 

VIBRATIONAL MOTIONS 
A brief background and some references relating to vibrational motion may be found 

in Ref. (I). The mathematical derivations made later in this paper are based on the 
following approximations: (1) the molecules in a solid vibrate as rigid bodies, and (2) 
the amplitudes of librations are small. The justification for (1) is that the amplitudes of 
intermolecular vibrations are often much larger than those of the intramolecular 
vibrations. Within this approximation, the vibrational properties required in the 
following treatment of vibrational averaging are conveniently summarized in the 3 x 3 
matrix L containing the components of the librational tensor. L may be defined for a 
librating molecule as 

L = (CG), [ll 
where c is parallel to the instantaneous rotation axis and I c I is the angle of displacement 
(in radians) from equilibrium about this axis. 

The symmetry restrictions on L depend on the symmetry about the center of libration 
and may be derived by applying the approach used in Ref. (I): 

(1) One mirror plane perpendicular to the z axis implies that L ,3 = L,, = 0. 
(2) Three mirror planes perpendicular to the x, y, and z axes imply that L,, = L,, = 

L,, = 0. 
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(3) A threefold, fourfold, or sixfold symmetry axis parallel to the z axis implies that 
L,, = L,, = L,, = 0 and L,, = L,,. 

(4) For cubic site symmetries L is isotropic: L,, = L,, = L,, and LIZ = L,, = L,, =O. 

MATHEMATICAL DERIVATIONS 
Let us assume that, in the presence of librations about an axis c, the instantaneous 

value of a measurable quantity, v, associated with a molecule may be written 

v, = PUP 121 

where p is a laboratory-fixed unit vector and U, is a real, symmetric and traceless 3 x 3 
matrix. Furthermore, let U be the equilibrium matrix equal to U, in the absence of 
librations. In the following the elements of p and U, are defined with respect to an ortho- 
normal basis. Assume, furthermore, that the elements of U, are stationary in a frame 
fixed in the molecule and therefore, in general, time dependent in the laboratory system. 
We then have U, = R,UR,, where R, is a rotation matrix representing a rotation, 
relative to the equilibrium orientation of the molecule, about an instantaneous axis c. 
The average (U,) over the librational motion will then be (R, UR,). The average of the 
observable v, becomes 

(UC> = P(U,)P. [31 

The expression (U,) = (R,UR,) may be rewritten in terms of the librational matrix 
L and it has been shown in Ref. (I) that 

(U,) = (1 - Tr L)U + f(LU + UL) + i lizi uLi,. 
i=l 

141 

Here 

and li is the eigenvalue corresponding to the ith eigenvector, I, of L. Thus L = 
Ci)=i &lit. In a similar way U may be written in terms of its eigenvectors and eigen- 
values: U = C:= 1 pi u,iii 

The last term in 141 may be written 

F = i ,& UL,, 
i=l 

= i liZi, (i /fjUjiij)Li, 
i=l j=l 

3 3 

= c 1 n,,uiZ, U,GjLi,. 
i=* j=l 
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The elements of F can now readily be evaluated. For example 

= L33 u2, -  2L23 ‘23 + L22 u33’ 

TABLE 1 

THE MATRIX B IN THE RELATION (II) = BU 

I-L,,-L,, 4, L33 -2L 
S12 ~-4h-w,*--2~,3 t”L:: iLl2 :LLJ 
f&3 :L l--+L-2Ln-L -L,3 U-1, 

L33 L,2 -243 l-L,,-Lu &I L,, 
-L23 t43 jL,2 

L 
-;:, 

WI3 

-2L L2 
fL,, -- I-2L,,&4L,, tG-3 

Ll, L 23 141,422 

TABLE 2 

THE FUNCTIONS RELATED TO THE 
REAL SECOND-ORDER SPHERICAL 

HARMONICS 

f,(A) = (A,, + A,, - 2A3J/3”’ 
f,(A) =A,, -4, 
J-364) = u,, 
f,(A) = 2413 
f&V = 2423 

The other terms in 141 also give sums of simple products of the elements of U and L. 
The elements of (U,) have been evaluated as outlined above, and the result may be 
summarized as 

(u) = Bu 

with ii = (U,, U,, U,, U,, U,, U,,). The 6 x 6 matrix B is given in Table 1. 
Equation [21 may be rewritten using functions related to the real second-order 

spherical harmonics (cf. Table 2) as described in Ref. (I): 

v, = @Up = i: dciqi = aq. 
i=l 

151 

Here qi = 271~‘~#~(p), where the ii are the real second-order spherical harmonics. These 
may be written ( 15/16n)1’2f(X) in terms of the functionsfi in Table 2. The matrix X has 
elements xixj formed from the components (x,x2x3) of the unit vector p. Similarly, Eq. 
[31 can be written 

(vc> = (4-h. 161 
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In a similar fashion a set of six functions g, may be defined in terms of L; the first five of 
these are gi =f,(L)/2. The sixth function, g, = L,, + L,, + Ls3, arises since the trace of 
L is nonzero. The relations between (d,), g, and d can be obtained from the various 

T4BLE 3 

THE MATRIX T IN THE RELATION (d,) = TdO 

relations involving (U,), L, U, d, and g, given above and shown in Table 1. The 
algebraic manipulations required are straightforward and the result may be written 

(d,) = Td. [71 
The 5 x 5 matrix T is given in Table 3. Matrix T is symmetric and its elements are linear 
in g,. Finally, Eqs. [61 and 171 give the bilinear form 

(oc) = ijTd. [81 

APPLICATIONS 

In the following sections the applicability of the formalism outlined above is demon- 
strated for a number of second-rank tensorial quantities encountered in NMR and NQR 
experiments. 

Quadrupole Interactions 
The quadrupole interaction for a nucleus with a quadrupole moment is proportional 

to the electric field gradient, V, with elements Vij = 8V/apiapj evaluated at the site of 
the nucleus. The observable splittings in NMR due to this interaction may be written in 
form 121 and are proportional to 

vpp = fivp, 191 
where p is a unit vector along the magnetic field. Similarly the NQR frequency in an 
NQR experiment will be a linear function of the elements of V. The field gradient tensor 
is affected by vibrations and, as a result, one observes a temperature dependence of the 
NQR frequencies or the quadrupole splittings in NMR: in most cases a decrease of the 
coupling with increasing temperature. The first attempt to account for this behavior was 
made by Bayer (2). He proposed an expression for the NQR frequency for an axially 
symmetric field gradient and a single librational motion about an axis normal to the 
symmetry axis of the field gradient. The theory was extended by Kushida (3) to in- 
clude a general field gradient and general molecular vibrations, and by Kushida et al. 
(4) to include the effect of pressure. Contributions from acoustic branches of the 
phonon spectrum to the librational averaging were discussed by McEnnan and 
Schempp (5). 

We limit ourselves here to the case where the electric field gradient is intramolecular 
in origin. Furthermore, the effect of intramolecular vibrations is not dealt with explicitly 
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but is considered to be included in V, the field gradient in the absence of librations. 
Under these conditions only the instantaneous directions of the eigenvectors of V, but 
not the eigenvalues, will be affected by librations, and V will behave in exactly the same 
way as U, in the previous section. 

As an example, let us select the coordinate system to be the principal axis system of 
the field gradient in the absence of librations and write eq = V,, and ?J = (V,, - 
V,,)/V,,. Then 

d, = -4% 
4 = &v, 

and 
d3 = d., = d, = 0. 

From Table 3, 
Wd = (1 - 3g, - We9 - g,eqrl 

Note that the quantity ( V,,) will not, for an arbitrary L, be an eigenvalue of the average 
field gradient tensor. Only if the eigenvectors of L and of the equilibrium V coincide will 
the average (V) have the same eigenvectors as the equilibrium quantity. Our relation is 
therefore more general than the similar relation given, for example, by McEnnan and 
Schempp (Eq. [21 in Ref. (5)). 

Chemical Shielding Tensors 
With the appearance in recent years of multiple pulse and double-resonance high- 

resolution techniques applied to solids, the determination of chemical shielding tensors 
has become possible. From the chemical shielding tensor, o, the chemical shift ~7 may be 
evaluated for an arbitrary diction of the magnetic field 

a=$Jp, 
where p is a unit vector along the field. Provided the shielding tensor is intramolecular in 
origin, and provided we treat the influence of intramolecular vibrations as in the case of 
the field gradient in the preceding section, o will behave as U, under librations. 

In general, however, Tr u #O since the chemical shift is always given with respect to 
an arbitrary reference and the trace will depend on the choice of this reference. Since, 
however, Tr o is invariant under rotations, the librations will have no effect on this 
trace. Therefore, without loss of generality, one can define a traceless tensor o’ with 
components 

ah = uii - id, Tr a, 

for which formulas [61 to [Sl and the relations in Table 3 may be used. 

Dipole-Dipole Interactions 
The dipole-dipole interactions between two nuclei of spin + give rise to a splitting of 

the resonance line. This splitting, /3, can be written 

where 
P = tr’hk, 

ak = (4rc”2/5r3)#k(r), qk = 2~~‘~ dk(h); 

[ 101 
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I is the internuclear vector, h is a unit vector parallel to the external magnetic field, and 
the h are the real second-order spherical harmonic functions defined above, If r is 
rapidly reorienting, the average of lk(r) over the reorientations should be used (I). 

It can be shown that isotropic and uncorrelated vibrations of the two nuclei do not 
affect the dipolar interactions (6-8). Consequently, the rigid-body approximation 
should be particularly good for dipolar interactions. See Ref. (I) for a more detailed dis- 
cussion. The librationally averaged splitting can be written 

B = $r’ft=a 1111 
where T(L) is given in Table 3. 

Second Moments in Diplar Solids 
The second moment in dipolar solids is closely related to the dipolar splitting. For the 

case studied in the preceding section (Eq. 111 I), one obtains from the definition of the 
second moment 

M2 = (/P/4) = (9/16)y4WqTaiTq. 

Here (9/16) f A* ti is equal to the second moment tensor S (I). The resulting relation 

M2 = 4TSTq I121 

is here derived for a special case, ,a two-spin system. The relation is general, however, 
and valid for an n-spin system, as can be seen by combining formula [81 (and Table 3) 
with Eqs. [141,[151, and 1161 in Ref. (I). 

Equation 1121 is equivalent to stating that the second moment tensor averaged over 
the librations, S(I), is equal to TST. It should be noted that this relation is actually linear 
to the first nonvanishing order in the elements of L. This follows since T can be written 
T = I + E, where Iii = S,, and where the elements of E are linear combinations of the 
elements of L. Then 

TST=(I+E)S(I+E)=S+ES+SE+ESE zS+ES+%=S+ES+z 1131 

One example of a calculation which can be simplified by the use of Eq. 1121 is the evalu- 
ation of the librationally averaged second moment for a powder. The result obtained for 
this quantity is Tr(TST), in agreement with previous results for less general cases (9). 
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